首页> 外文OA文献 >ORBIT AND FORMATION CONTROL FOR LOW-EARTH-ORBIT GRAVIMETRY DRAG-FREE SATELLITES
【2h】

ORBIT AND FORMATION CONTROL FOR LOW-EARTH-ORBIT GRAVIMETRY DRAG-FREE SATELLITES

机译:低地球重力无药量卫星的轨道和形成控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper outlines orbit and formation control of a long-distance (>100 km) two-satellite formation for the Earth gravity monitoring. Modeling and control design follows the Embedded Model Control methodology. We distinguishe be-tween orbit and formation control: orbit control applies to a single satellite and performs altitude control. Formation control is formulated as a control capable of altitude and distance control at the same time. The satellites being placed in a low Earth orbit, orbit and formation control employ the measurements of a global navigation system. Formation control is imposed by long-distance laser interferometry, which is the key instrument together with GOCE-class accelerometers for gravity measurement. Orbit and formation control are low-frequency control systems in charge of cancelling the bias and drift of the residual drag-free accelerations. Drag-free control is the core of orbit/formation control since it makes the formation to fly drag-free only subject to gravity. Drag-free is demanded by the low-Earth orbit and by the accelerometer systematic errors. Drag-free control being required to have a bandwidth close to 1 Hz, is designed as the inner loop of the formation control, but formation control must not destroy drag-free performance, which is obtained by restricting formation control to be effective only below orbital frequency. A control of this kind appears to be original: an appropriate orbit and formation dynamics is derived, discussed and compared with the classical Hill-Clohessy-Wiltshire equations. The derived dynamics is the first step to build the embedded model which is sampled at the orbit rate. Embedded model derivation is explained only for the orbit control, and briefly mentioned for the formation control. Control design is explained in some details, pointing out reference generation, state predictor, control law and main design steps. Simulated results are provided. Drag free results are compared to GOCE data
机译:本文概述了用于地球重力监测的长距离(> 100 km)两颗卫星编队的轨道和编队控制。建模和控制设计遵循嵌入式模型控制方法。我们区分了轨道控制和编队控制:轨道控制适用于单个卫星并执行高度控制。编队控制被公式化为能够同时进行高度和距离控制的控制。置于低地球轨道,轨道和编队控制中的卫星采用全球导航系统的测量。地层控制是通过远距离激光干涉仪进行的,这是与重力测量用的GOCE级加速度计一起使用的关键仪器。轨道和编队控制是低频控制系统,负责消除残余的无阻力加速度的偏差和漂移。无阻力控制是轨道/编队控制的核心,因为它使编队仅在重力作用下无阻力飞行。近地轨道和加速度计系统误差要求无阻力。要求无拖曳控制具有接近1 Hz的带宽,被设计为编队控制的内环,但是编队控制不得破坏无拖曳性能,这是通过限制编队控制仅在轨道以下有效而获得的频率。这种控制似乎是原始的:得出,讨论并与经典的Hill-Clohessy-Wiltshire方程进行比较,并讨论适当的轨道和编队动力学。导出的动力学是构建以轨道速率采样的嵌入式模型的第一步。嵌入式模型推导仅针对轨道控制进行了说明,而对于编队控制则作了简要介绍。详细介绍了控制设计,并指出了参考生成,状态预测器,控制律和主要设计步骤。提供了模拟结果。将无阻力结果与GOCE数据进行比较

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号